Monopolistic Competition when Income Matters

Paolo Bertoletti and Federico Etro

University of Pavia and Ca’ Foscari University, Venice

Hitotsubashi University, March 6, 2014
Purpose

We propose an alternative microfoundation to models of imperfect competition and product differentiation with and without endogenous entry.
Purpose

- We propose an alternative microfoundation to models of imperfect competition and product differentiation with and without endogenous entry.
Purpose

- We propose an alternative microfoundation to models of imperfect competition and product differentiation with and without endogenous entry.
- Separable utility à la Dixit-Stiglitz is widely applied in trade (Krugman, 1980; Melitz, 2003) and macroeconomics (New-Keynesian models, Endogenous entry models) under CES preferences.
Purpose

- We propose an alternative microfoundation to models of imperfect competition and product differentiation with and without endogenous entry.
- Separable utility à la Dixit-Stiglitz is widely applied in trade (Krugman, 1980; Melitz, 2003) and macroeconomics (New-Keynesian models, Endogenous entry models) under CES preferences.
- It is also useful to study Cournot competition with product differentiation.
D-S assume additively separable preferences ("direct additivity"):

\[U = \sum_{j=1}^{n} u(x_j) \]
Background

- D-S assume additively separable preferences ("direct additivity"):
 \[U = \sum_{j=1}^{n} u(x_j) \]

- Separability is restrictive, because there are many other symmetric but non-separable preferences \(U = U(x) \)
Background

- D-S assume additively separable preferences ("direct additivity"):
 \[U = \sum_{j=1}^{n} u(x_j) \]
- Separability is restrictive, because there are many other symmetric but non-separable preferences \(U = U(x) \)
- Direct additivity implies that the Marginal Rate of Substitution \(\frac{u(x_i)}{u(x_j)} \) between any two varieties does not depend on the consumption of other varieties \(x_k \).
Background

- D-S assume additively separable preferences ("direct additivity"):
 \[U = \sum_{j=1}^{n} u(x_j) \]

- Separability is restrictive, because there are many other symmetric but non-separable preferences \(U = U(x) \).

- Direct additivity implies that the Marginal Rate of Substitution \(u(x_i) / u(x_j) \) between any two varieties does not depend on the consumption of other varieties \(x_k \).

- Most applications focus on CES preferences with \(\theta \in (1, \infty) \):
 \[U = \sum_{j=1}^{n} x_j^{\frac{\theta-1}{\theta}} \]
Monopolistic competition à la Dixit-Stiglitz

- Equilibrium in the CES case:

\[p = \frac{\theta c}{\theta - 1}, \quad n = \frac{EL}{\theta F}, \quad q = \frac{(\theta - 1)F}{c} \]

where \(p \) = price, \(n \) = number of firms and \(q = xL \) = firm production, \(E \) = income, \(L \) = population, \(c \) = marginal cost and \(F \) = fixed cost. A double marke size (number of consumers) generates double number of goods, with same price (and quantity per firm), but only with CES. Income does not affect price and quantity, not just with CES.
Monopolistic competition à la Dixit-Stiglitz

- Equilibrium in the CES case:

\[
p = \frac{\theta c}{\theta - 1}, \quad n = \frac{EL}{\theta F}, \quad q = \frac{(\theta - 1) F}{c}
\]

where \(p = \) price, \(n = \) number of firms and \(q = xL = \) firm production, \(E = \) income, \(L = \) population, \(c = \) marginal cost and \(F = \) fixed cost. A double market size (number of consumers) generates double number of goods, with same price (and quantity per firm), but only with CES. Income does not affect price and quantity, not just with CES.

\[
p = \frac{\theta(x) c}{\theta(x) - 1}, \quad n = \frac{EL}{\theta(x) F}, \quad q = \frac{(\theta(x) - 1) F}{c}
\]

where \(\theta(x) = -u'(x)/xu''(x) \).
Monopolistic competition à la Dixit-Stiglitz

- Equilibrium in the CES case:

\[p = \frac{\theta c}{\theta - 1}, \quad n = \frac{EL}{\theta F}, \quad q = \frac{(\theta - 1) F}{c} \]

where \(p \) = price, \(n \) = number of firms and \(q = xL \) = firm production, \(E \) = income, \(L \) = population, \(c \) = marginal cost and \(F \) = fixed cost. A double marke size (number of consumers) generates double number of goods, with same price (and quantity per firm), but only with CES. Income does not affect price and quantity, not just with CES.

\[p = \frac{\theta(x)c}{\theta(x) - 1}, \quad n = \frac{EL}{\theta(x)F}, \quad q = \frac{(\theta(x) - 1) F}{c} \]

where \(\theta(x) = -u'(x) / xu''(x) \).

- With Cournot or Bertrand competition and CES, an additional competition effect for trade (Etro, 2013, Scand.J.E.) and RBC (Etro-Colciago, 2010, Econ.Journ.)
The Model

- We consider a different microfoundation, based on different preferences

\[V = \sum_{j=1}^{n} v_j p_j E \]

with \(v > 0, v_0 < 0 \) and \(v_{00} > 0 \) and some regularity conditions.

By Hicks (1969) and Samuelson (1969) we know that direct additivity and indirect additivity represent two distinct classes of well-behaved preferences with only one case in common: CES.
The Model

- We consider a different microfoundation, based on different preferences
- We look at the indirect utility (dual approach)
The Model

- We consider a different microfoundation, based on different preferences
- We look at the indirect utility (dual approach)
- and assume additively separable indirect utility ("indirect additivity"):

\[V(E) = \sum_{j=1}^{n} v_p j E \]

with

\[v > 0, \quad v_0 < 0 \quad \text{and} \quad v_{00} > 0 \]

and some regularity conditions.

By Hicks (1969) and Samuelson (1969) we know that direct additivity and indirect additivity represent two distinct classes of well-behaved preferences with only one case in common: CES.
The Model

- We consider a different microfoundation, based on different preferences
- We look at the indirect utility (dual approach)
- and assume additively separable indirect utility ("indirect additivity"):

\[
V = \sum_{j=1}^{n} v \left(\frac{p_{j}}{E} \right)
\]

with \(v > 0, \; v' < 0 \) and \(v'' > 0 \) and some regularity conditions. \(E \) is income of the consumer.
The Model

- We consider a different microfoundation, based on different preferences.
- We look at the indirect utility (dual approach).
- and assume additively separable indirect utility (“indirect additivity”):

\[V = \sum_{j=1}^{n} v \left(\frac{p_j}{E} \right) \]

with \(v > 0, \ v' < 0 \) and \(v'' > 0 \) and some regularity conditions. \(E \) is income of the consumer.

- By Hicks (1969) and Samuelson (1969) we know that direct additivity and indirect additivity represent two distinct classes of well-behaved preferences with only one case in common: CES.
Direct demand function

- Indirect additivity \((\sum_{j=1}^{n} = \int_{0}^{n} \text{if you like})\):

\[V = \sum v \left(\frac{p_j}{E} \right) \]
Direct demand function

- Indirect additivity ($\sum_{j=1}^{n} = \int_{0}^{n}$ if you like):

$$V = \sum v \left(\frac{p_j}{E} \right)$$

- The Roy identity generates the direct demand function of each consumer:

$$x_i = \frac{\partial V / \partial p_i}{-\partial V / \partial E} = \frac{v' \left(\frac{p_i}{E} \right)}{\sum v' \left(\frac{p_j}{E} \right) \frac{p_j}{E}}$$
Direct demand function

- Indirect additivity \((\sum_{j=1}^{n} = \int_{0}^{n} \text{if you like}):\)

\[V = \sum v \left(\frac{p_j}{E} \right) \]

- The Roy identity generates the direct demand function of each consumer:

\[x_i = \frac{\partial V / \partial p_i}{-\partial V / \partial E} = \frac{v'(\frac{p_i}{E})}{\sum v'(\frac{p_j}{E}) \frac{p_j}{E}} \]

- Indirect additivity implies that the relative demand of two varieties \(x_i / x_j\) does not depend on the price of other varieties \(p_k\).
Direct demand function

- Indirect additivity \((\sum_{j=1}^{n} = \int_{0}^{n} \text{if you like})\):

\[
V = \sum \nu \left(\frac{p_j}{E} \right)
\]

- The Roy identity generates the direct demand function of each consumer:

\[
x_i = \frac{\partial V / \partial p_i}{-\partial V / \partial E} = \frac{\nu' \left(\frac{p_i}{E} \right)}{\sum \nu' \left(\frac{p_j}{E} \right) \frac{p_j}{E}}
\]

- Indirect additivity implies that the relative demand of two varieties \(x_i / x_j\) does not depend on the price of other varieties \(p_k\).

- The denominator \(\mu = \sum \nu' \left(\frac{p_j}{E} \right) \frac{p_j}{E} < 0\) is taken as given in monopolistic competition.
Direct demand function

- Indirect additivity ($\sum_{j=1}^{n} = \int_{0}^{n}$ if you like):

$$ V = \sum v \left(\frac{p_j}{E} \right) $$

- The Roy identity generates the direct demand function of each consumer:

$$ x_i = \frac{\partial V / \partial p_i}{-\partial V / \partial E} = \frac{v' \left(\frac{p_i}{E} \right)}{\sum v' \left(\frac{p_j}{E} \right) \frac{p_j}{E}} $$

- Indirect additivity implies that the relative demand of two varieties x_i / x_j does not depend on the price of other varieties p_k.

- The denominator $\mu = \sum v' \left(\frac{p_j}{E} \right) \frac{p_j}{E} < 0$ is taken as given in monopolistic competition.

- Market demand is given by $q_i = x_i L$ where L is number of consumers (market size)
Some examples of direct demands

- CES: \(v(p) = p^{1-\theta} \) delivers:

\[
q_i = \frac{p_i^{-\theta} EL}{\sum p_j^{1-\theta}}
\]
Some examples of direct demands

- **CES**: $v(p) = p^{1-\theta}$ delivers:

 $$q_i = \frac{p_i^{-\theta} EL}{\sum p_j^{1-\theta}}$$

- **EXPONENTIAL**: $v(p) = e^{-\tau p}$ delivers log-linear demand:

 $$q_i = \frac{e^{-\frac{\tau p_i}{\varepsilon}} EL}{\sum e^{-\frac{\tau p_j}{\varepsilon}} \cdot p_j}$$

 (notice the difference from the Logit, which has no income effects)
Some examples of direct demands

- ADDILOG: \(\nu(p) = (a - p)^{1+\gamma} \) delivers the linear perceived demand when \(\gamma = 1 \):

\[
q_i = \frac{(a - \frac{p_i}{E}) \cdot EL}{\sum (a - \frac{p_j}{E}) \cdot p_j}
\]
Some examples of direct demands

- **ADDILOG:** \(v(p) = (a - p)^{1+\gamma} \) delivers the linear perceived demand when \(\gamma = 1 \):
 \[
 q_i = \frac{(a - \frac{p_i}{E}) \cdot EL}{\sum (a - \frac{p_j}{E}) \cdot p_j}
 \]

- **DISPLACED CES:** \(v(p) = (p + b)^{1-\vartheta} \) delivers:
 \[
 q_i = \frac{(\frac{p_i}{E} + b)^{-\vartheta} \cdot EL}{\sum (\frac{p_i}{E} + b)^{-\vartheta} \cdot p_j}
 \]
Monopolistic Competition (Dual)

- Monopolistic competition implies that there are so many firms that the impact of each price on the marginal utility of income is negligible: μ is taken as given
Monopolistic Competition (Dual)

- Monopolistic competition implies that there are so many firms that the impact of each price on the marginal utility of income is negligible: μ is taken as given.
- Profit can be written as:

$$\pi_i = \frac{(p_i - c) v'(p_i/E) L}{\mu} - F$$

where $c > 0$ and $F > 0$ are respectively marginal and fixed costs.
Monopolistic competition implies that there are so many firms that the impact of each price on the marginal utility of income is negligible: μ is taken as given.

Profit can be written as:

$$\pi_i = \frac{(p_i - c)v'(\frac{p_i}{E})L}{\mu} - F$$

where $c > 0$ and $F > 0$ are respectively marginal and fixed costs.

The demand elasticity is $\theta(p_i/E) \equiv -\frac{v''p_i}{v'E} > 0$: it depends on p_i/E, not on μ and L.
Pricing

- The FOC is:

\[
\frac{p^e - c}{p^e} = \frac{1}{\theta \left(\frac{p^e}{E} \right)}
\]
Pricing

The FOC is:

\[
\frac{p^e - c}{p^e} = \frac{1}{\theta \left(\frac{p^e}{E} \right)}
\]

The optimal price is always independent from the number of varieties.
Pricing

- The FOC is:

\[
\frac{p^e - c}{p^e} = \frac{1}{\theta \left(\frac{p^e}{E} \right)}
\]

- The optimal price is always independent from the number of varieties.
- However, if \(\theta' > (\leq) 0 \), the optimal price grows (decreases) with income because firms face a more (less) rigid demand.
Pricing

- The FOC is:
 \[\frac{p^e - c}{p^e} = \frac{1}{\theta \left(\frac{p^e}{E} \right)} \]

- The optimal price is always independent from the number of varieties.

- However, if \(\theta' > (\leq) 0 \), the optimal price grows (decreases) with income because firms face a more (less) rigid demand.

- Rationale for *procyclical markups* in macro, for *pricing to market* in trade
Endogenous Entry Equilibrium

- Dual:

\[
\frac{p^e - c}{p^e} = \frac{1}{\theta \left(\frac{p^e}{E}\right)}, \quad n^e = \frac{EL}{F\theta \left(\frac{p^e}{E}\right)}, \quad q^e = F\frac{\theta \left(\frac{p^e}{E}\right) - 1}{c}
\]

Notice that \(\epsilon_{pL} = \epsilon_{qL} = 0\) and \(\epsilon_{nL} = 1\) which generalizes the classical result by Krugman (1980) concerning market size with CES preferences: pure gains from variety without any competitive effect on prices and firm size.

Other results (pricing to market and undershifting):

\(\epsilon_{pE} \leq 0\) and \(\epsilon_{nE} \leq 1\) if \(\theta > 0\) \(\left(\frac{p^e}{E}\right) \leq 0\) and \(\epsilon_{pc} \geq 1\) and \(\epsilon_{nc} \geq 0\) if \(\theta > 0\) \(\left(\frac{p^e}{E}\right) \geq 0\)
Endogenous Entry Equilibrium

- Dual:

\[
\frac{p^e - c}{p^e} = \frac{1}{\theta \left(\frac{p^e}{E} \right)}, \quad n^e = \frac{EL}{F \theta \left(\frac{p^e}{E} \right)}, \quad q^e = F \frac{\theta \left(\frac{p^e}{E} \right) - 1}{c}
\]

- Notice that

\[
\epsilon_{pL} = \epsilon_{qL} = 0 \quad \text{and} \quad \epsilon_{nL} = 1
\]

which generalizes the classical result by Krugman (1980) concerning market size with CES preferences: pure gains from variety without any competitive effect on prices and firm size.
Endogenous Entry Equilibrium

- Dual:

\[
\frac{p^e - c}{p^e} = \frac{1}{\theta \left(\frac{p^e}{E} \right)}, \quad n^e = \frac{EL}{F \theta \left(\frac{p^e}{E} \right)}, \quad q^e = F \frac{\theta \left(\frac{p^e}{E} \right) - 1}{c}
\]

- Notice that

\[
\epsilon_{pL} = \epsilon_{qL} = 0 \quad \text{and} \quad \epsilon_{nL} = 1
\]

which generalizes the classical result by Krugman (1980) concerning market size with CES preferences: pure gains from variety without any competitive effect on prices and firm size.

- Other results (pricing to market and undershifting):

\[
\epsilon_{pE} \geq 0 \quad \text{and} \quad \epsilon_{nE} \geq 1 \quad \text{iff} \quad \theta' \left(\frac{p^e}{E} \right) \geq 0
\]

\[
\epsilon_{pc} \leq 1 \quad \text{and} \quad \epsilon_{nc} \leq 0 \quad \text{iff} \quad \theta' \left(\frac{p^e}{E} \right) \leq 0
\]
Two new examples with closed form solutions

- The (negative) exponential demand $q_i = e^{-\frac{\tau p_i}{E}} L / \mu$ delivers:

 \[p^e = c + \frac{E}{\tau}, \quad n^e = \frac{E^2 L}{F(c\tau + E)}, \quad q^e = \frac{F\tau}{E} \]
Two new examples with closed form solutions

- The (negative) exponential demand \(q_i = e^{-\frac{tp_i}{E}} L/\mu \) delivers:

 \[
 p^e = c + \frac{E}{\tau}, \quad n^e = \frac{E^2L}{F(c\tau + E)}, \quad q^e = \frac{F\tau}{E}
 \]

- The linear demand case \(q_i = \left(a - \frac{p_i}{E} \right) L/\mu \) delivers:

 \[
 p^e = \frac{c + aE}{2}, \quad n^e = \frac{(aE - c)EL}{F(aE + c)}, \quad q^e = \frac{2F}{aE - c}
 \]
Two new examples with closed form solutions

- The (negative) exponential demand \(q_i = e^{-\frac{\tau p_i}{E}} L/\mu \) delivers:

\[
p^e = c + \frac{E}{\tau}, \quad n^e = \frac{E^2 L}{F(c\tau + E)}, \quad q^e = \frac{F\tau}{E}
\]

- The linear demand case \(q_i = \left(a - \frac{p_i}{E}\right) L/\mu \) delivers:

\[
p^e = \frac{c + aE}{2}, \quad n^e = \frac{(aE - c) EL}{F(aE + c)}, \quad q^e = \frac{2F}{aE - c}
\]

- The displaced CES case \(q_i = \left(\frac{p_i}{E} + b\right)^{-\theta} L/\mu \) delivers:

\[
p^e = \frac{\theta (c + bE)}{\theta - 1}, \quad n^e = \frac{(c + \theta bE) EL}{\theta F(c + bE)}, \quad q^e = \frac{F(\theta - 1)}{c + bE}
\]
Direct Utility Functions

- How did the direct utility look like? Not separable, but how?
Direct Utility Functions

- How did the direct utility look like? Not separable, but how?
- We can recover it by duality.
Direct Utility Functions

- How did the direct utility look like? Not separable, but how?
- We can recover it by duality.
- The exponential demand derives from the direct utility:

\[U = \sum x_i \cdot \exp \left(-\frac{\tau + \sum_{j=1}^{n} x_j \ln x_j}{\sum_{j=1}^{n} x_j} \right) \]
Direct Utility Functions

- How did the direct utility look like? Not separable, but how?
- We can recover it by duality.
- The exponential demand derives from the direct utility:

\[U = \sum x_i \cdot \exp \left(- \frac{\tau + \sum_{j=1}^{n} x_j \ln x_j}{\sum_{j=1}^{n} x_j} \right) \]

- The linear demand case derives from the direct utility:

\[U = \frac{(a \sum x_j - 1)^2}{\sum x_j^2} \]
Direct Utility Functions

- How did the direct utility look like? Not separable, but how?
- We can recover it by duality.
- The exponential demand derives from the direct utility:
 \[
 U = \sum x_i \cdot \exp \left(-\frac{\tau + \sum_{j=1}^{n} x_j \ln x_j}{\sum_{j=1}^{n} x_j} \right)
 \]
- The linear demand case derives from the direct utility:
 \[
 U = \frac{(a \sum x_j - 1)^2}{\sum x_j^2}
 \]
- The displaced CES case derives from the direct utility:
 \[
 U = \frac{\left(\sum x_j^{\frac{\theta-1}{\theta}} \right)^{\frac{\theta}{\theta-1}}}{1 + b \sum x_j}
 \]
Social Optimum and inefficient entry

- The best allocation solves the following problem:

$$\max_{n, p} n \cdot v \left(\frac{p}{E} \right)$$

under the resource constraint $EL \geq n (cq + F)$.
The best allocation solves the following problem:

$$\max_{n,p} n \cdot v \left(\frac{p}{E} \right)$$

under the resource constraint $EL \geq n(cq + F)$.

FOCs deliver:

$$\frac{p^* - c}{p^*} = \frac{1}{1 + \eta \left(\frac{p^*}{E} \right)}$$

$$n^* = \frac{EL}{F \left[1 + \eta \left(\frac{p^*}{E} \right) \right]}$$

where $\eta(p/E) \equiv -\frac{v'(p)}{v(E)} > 0$ is the elasticity of $v(\cdot)$.
Social Optimum and inefficient entry

- The best allocation solves the following problem:

$$\max_{n,p} n \cdot v \left(\frac{p}{E} \right)$$

under the resource constraint $EL \geq n (cq + F)$.

- FOCs deliver:

$$\frac{p^* - c}{p^*} = \frac{1}{1 + \eta \left(\frac{p^*}{E} \right)}, \quad n^* = \frac{EL}{F \left[1 + \eta \left(\frac{p^*}{E} \right) \right]}$$

where $\eta(p/E) \equiv -\frac{v'p}{vE} > 0$ is the elasticity of $v(\cdot)$.

- Excess entry arises if and only if $\eta' > 0$, as in the exponential and linear examples (CES delivers the optimal equilibrium)
Bertrand competition and endogenous entry

- Suppose that the number of firms is limited and strategic interactions play a role
Bertrand competition and endogenous entry

- Suppose that the number of firms is limited and strategic interactions play a role.
- In a Bertrand setting, considering the actual demand, each firm i chooses its price p_i to maximize:

$$
\pi_i = \frac{(p_i - c) v' \left(\frac{p_i}{E} \right) L}{\sum_{j=1}^{n} v' \left(\frac{p_j}{E} \right) \frac{p_j}{E}} - F
$$

where the denominator is not taken as given.

In a symmetric Bertrand equilibrium:

$$
\pi_B = \left(\frac{p_B}{E} \right)^{\frac{\theta(p_B/E)}{1 + \theta(p_B/E)}}
$$

In $B > n$ and thus excess entry is more likely in Bertrand than in monopolistic competition. The competitive effect is restored.
Suppose that the number of firms is limited and strategic interactions play a role.

In a Bertrand setting, considering the *actual* demand, each firm i chooses its price p_i to maximize:

$$\pi_i = \frac{(p_i - c) v'(p_i/E) L}{\sum_{j=1}^{n} v'(p_j/E) p_j/E} - F$$

where the denominator is not taken as given.

In a symmetric Bertrand equilibrium:

$$\frac{p^B - c}{p^B} = 1 + \frac{[\theta(p^B/E) - 1]F}{\theta(p^B/E)}$$

$$n^B = \frac{EL - F}{F\theta(p^B/E)} + 1$$
Bertrand competition and endogenous entry

- Suppose that the number of firms is limited and strategic interactions play a role.
- In a Bertrand setting, considering the actual demand, each firm i chooses its price p_i to maximize:

$$\pi_i = \frac{(p_i - c) v'(\frac{p_i}{E}) L}{\sum_{j=1}^{n} v'(\frac{p_j}{E}) \frac{p_j}{E}} - F$$

where the denominator is not taken as given.

- In a symmetric Bertrand equilibrium:

$$\frac{p^B - c}{p^B} = 1 + \frac{[\theta(p^B/E) - 1]F}{\theta\left(\frac{p^B}{E}\right)} \frac{E}{F\theta\left(\frac{p^B}{E}\right)} + 1$$

$$n^B = \frac{EL - F}{F\theta\left(\frac{p^B}{E}\right)} + 1$$

- $n^B > n^e$ and thus excess entry is more likely in Bertrand than in monopolistic competition. The competitive effect of L is restored.
Aggressive Leaders and implications for Competition Policy

- The model belongs to the class of "aggregative" games with endogenous entry (Etro, 2006, Rand; 2008, EJ): neutrality of the price/commitments of Stackelberg leaders on μ and the strategy of followers.

- Applications to competition policy: vertical contracts with low wholesale price below the marginal cost, bundling to strengthen price competition in the secondary market, other incentive contracts increase CS with $\eta > 0$, mergers to increase prices reduce CS with $\eta < 0$.
The model belongs to the class of "aggregative" games with endogenous entry (Etro, 2006, Rand; 2008, EJ): neutrality of the price/commitments of Stackelberg leaders on μ and the strategy of followers.

Leaders always choose $p^e < p^B$, thereby reducing the equilibrium number of firms with respect to n^B.

Applications to competition policy: vertical contracts with low wholesale price below the marginal cost, bundling to strengthen price competition in the secondary market, other incentive contracts increase CS with $\eta_0 > 0$, mergers to increase prices reduce CS with $\eta_0 > 0$.

Aggressive Leaders and implications for Competition Policy
Aggressive Leaders and implications for Competition Policy

- The model belongs to the class of "aggregative" games with endogenous entry (Etro, 2006, Rand; 2008, EJ): neutrality of the price/commitments of Stackelberg leaders on μ and the strategy of followers.
- Leaders always choose $p^e < p^B$, thereby reducing the equilibrium number of firms with respect to n^B.
- This is neutral on consumer welfare with CES preferences (Etro, 2008; Anderson et al., 2012), but raises (decreases) consumers welfare if $\eta' > (<) 0$.

Applications to competition policy: vertical contracts with low wholesale price below the marginal cost, bundling to strengthen price competition in the secondary market, other incentive contracts increase CS with $\eta > 0$, mergers to increase prices reduce CS with $\eta > 0$.

Aggressive Leaders and implications for Competition Policy

- The model belongs to the class of "aggregative" games with endogenous entry (Etro, 2006, Rand; 2008, EJ): neutrality of the price/commitments of Stackelberg leaders on μ and the strategy of followers.

- Leaders always choose $p^e < p^B$, thereby *reducing* the equilibrium number of firms with respect to n^B.

- This is neutral on consumer welfare with CES preferences (Etro, 2008; Anderson *et al.*, 2012), but raises (decreases) consumers welfare if $\eta' > (<) 0$.

- Applications to competition policy: *vertical contracts* with low wholesale price below the marginal cost, *bundling* to strengthen price competition in the secondary market, other *incentive contracts* increase CS with $\eta' > 0$, *mergers* to increase prices reduce CS with $\eta' > 0$.
Extensions and applications

1. Outside good à la D-S:

\[V = \left(\frac{E}{p^0} \right)^\gamma \left(\sum v \left(\frac{p_j}{E} \right) \right)^{1-\gamma} \]
Extensions and applications

1. *Outside good* à la D-S:

\[V = \left(\frac{E}{p^0} \right)^\gamma \left(\sum v \left(\frac{p_j}{E} \right) \right)^{1-\gamma} \]

- All goes through.
1. *Outside good* à la D-S:

\[V = \left(\frac{E}{p^0} \right)^\gamma \left(\sum v \left(\frac{p_j}{E} \right) \right)^{1-\gamma} \]

- All goes through.
- The first best requires marginal cost pricing.
Extensions and applications

1. *Heterogenous consumers:*

\[V_h = \sum v_h \left(\frac{p_j}{E_h} \right) \]
Extensions and applications

1. *Heterogenous consumers*:

\[V_h = \sum v_h \left(\frac{p_j}{E_h} \right) \]

- All goes through with

\[\frac{p^e - c}{p^e} = \frac{1}{\tilde{\theta}(p^e, C)} \quad \text{with} \quad \tilde{\theta}(p, C) \equiv \int_h \theta_h \left(\frac{p}{E_h} \right) \omega_h dC(h) \]
Extensions and applications

1. **Heterogenous consumers**:

\[V_h = \sum v_h \left(\frac{p_j}{E_h} \right) \]

► All goes through with

\[\frac{p^e - c}{p^e} = \frac{1}{\tilde{\theta}(p^e, C)} \quad \text{with} \quad \tilde{\theta}(p, C) \equiv \int_h \theta_h \left(\frac{p}{E_h} \right) \omega_h dC(h) \]

► a) market size is neutral
b) if \(\theta' > 0 \), a change of the distribution according to the *likelihood-ratio dominance* raises prices and number of firms more than with respect to the increase of the average income
c) a *mean preserving spread* of the income distribution decreases (raises) prices and the mass of active firms if the demand elasticity is convex (concave) in the price.
Extensions and applications

1. *Heterogenous costs* à la Melitz: market size is neutral, but changes in income induce selection effects.
Extensions and applications

1. *Heterogenous costs* à la Melitz: market size is neutral, but changes in income induce selection effects

- c is distributed according to $G(c)$. Entry cost F_e
Extensions and applications

1. *Heterogenous costs* à la Melitz: market size is neutral, but changes in income induce selection effects

- c is distributed according to $G(c)$. Entry cost F_e
- Condition for marginal active firm:

$$[p(\hat{c}) - \hat{c}] \frac{\nu'(p(\hat{c})/E) L}{\mu} = F$$
Extensions and applications

1. *Heterogenous costs* à la Melitz: market size is neutral, but changes in income induce selection effects

- c is distributed according to $G(c)$. Entry cost F_e
- Condition for marginal active firm:

$$[p(\hat{c}) - \hat{c}] \frac{\nu'(p(\hat{c})/E)L}{\mu} = F$$

- Condition for endogenous entry:

$$\int_{\hat{c}}^{c} [\pi_v(c) - F] dG(c) = F_e$$
Extensions and applications

1. *Heterogenous costs* à la Melitz: market size is neutral, but changes in income induce selection effects

- c is distributed according to $G(c)$. Entry cost F_e
- Condition for marginal active firm:
 \[
 [p(\hat{c}) - \hat{c}] \frac{\nu'(p(\hat{c}) / E) L}{\mu} = F
 \]
- Condition for endogenous entry:
 \[
 \int_{\underline{c}}^{\hat{c}} [\pi_v(c) - F] dG(c) = F_e
 \]
- market size is neutral but higher income increases all prices and makes less productive firms able to survive (an anti-selection effect) if $\theta' > 0$
Extensions and applications

1. *Two-country model* à la Krugman (assume $\theta' > 0$)
 First case: no transport costs, different countries

 - Firms adopt a higher price in the richer country, and international trade reduces the mass and increases the size of firms in the richer country.
 - Trade opening reduces the markup on the exported goods and the mass of firms in each country relative to autarky.
 - A reduction in transport costs reduces the price of exports but increases their markups, and therefore induces the creation of new traded goods.

 - Richer countries trade between themselves more than poorer countries.
Extensions and applications

1. *Two-country model* à la Krugman (assume $\theta' > 0$)

 First case: no transport costs, different countries

 - firms adopt a higher price in the richer country, and international trade does reduces the mass and increases the size of firms in the richer country

 Second case: identical countries with transport costs
1. *Two-country model* à la Krugman (assume $\theta' > 0$)

First case: no transport costs, different countries

- firms adopt a higher price in the richer country, and international trade does reduce the mass and increases the size of firms in the richer country

Second case: identical countries with transport costs

- trade opening reduces the markup on the exported goods and the mass of firms in each country relative to autarky
Extensions and applications

1. Two-country model à la Krugman (assume $\theta' > 0$)
 First case: no transport costs, different countries
 - firms adopt a higher price in the richer country, and international trade does reduce the mass and increase the size of firms in the richer country

 Second case: identical countries with transport costs
 - trade opening reduces the markup on the exported goods and the mass of firms in each country relative to autarky
 - a reduction in transport costs reduces the price of exports but increases their markups, and therefore induces the creation of new traded goods
Extensions and applications

1. Two-country model à la Krugman (assume $\theta' > 0$)
 First case: no transport costs, different countries
 • firms adopt a higher price in the richer country, and international trade does reduce the mass and increases the size of firms in the richer country
 Second case: identical countries with transport costs
 • trade opening reduces the markup on the exported goods and the mass of firms in each country relative to autarky
 • a reduction in transport costs reduces the price of exports but increases their markups, and therefore induces the creation of new traded goods
 • richer countries trade between themselves more than poorer countries
Extensions and applications

1. *New-Keynesian macroeconomics* à la Blanchard-Kyotaki: nominal rigidities are amplified with Bertrand competition
Extensions and applications

1. *New-Keynesian macroeconomics* à la Blanchard-Kyotaki: nominal rigidities are amplified with Bertrand competition

2. *Endogenous quality* à la Sutton: price and quality still independent of market size
Extensions and applications

1. *New-Keynesian macroeconomics* à la Blanchard-Kyotaki: nominal rigidities are amplified with Bertrand competition

2. *Endogenous quality* à la Sutton: price and quality still independent of market size

3. *Generalized EMS* under any symmetric non-separable preferences
Conclusions

- The dual assumption of *Indirect Additivity* introduces a new setting into monopolistic competition. Its results generalize properties of the CES case concerning the impact of the market size. The neutrality of income disappears and a rationale for pricing to market emerges. New simple models of price competition with and without free entry can be derived from indirectly additive preferences (*exponential and linear demand*).