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Abstract

This paper deals with the large deviations for the empirical distribution of kernel type (smoothed
empirical distribution)

F̂n(x) � 1
n

n∑
j=1

K

(
x − Xj

hn

)
, (1)

where K is the kernel and hn is a smoothing parameter. We limit ourselves to the i.i.d. case. One
of the purposes of this paper is to establish the large deviation principle (LDP) for the smoothed
empirical distribution. This result is proved to be not only a smoothed version of Sanov’s theo-
rem, i.e., the LDP for the standard empirical distribution, but a generalization of the theorem. In
this paper we have considered the weak topology rather than the τ -topology, namely, we endow
the space of distributions on R

d with the weak topology. After proving it, we consider several
applications : a smooth version of Dvoretzky-Kiefer-Wolfowitz’s large deviation inequality, a lim-
iting behavior of the kernel density estimator and the LDP for the smoothed bootstrap empirical
distribution.

We consider two approaches in order to prove the LDP. First, it is proved by the weak conver-
gence approach under the condition that the underlying distribution is absolutely continuous with
respect to Lebesugue measure on R

d. This approach, summerized in Dupuis and Ellis (1997), is
based on interpreting large deviation problems to the weak convergence problems of associated
controlled processes and focuses on the key role of the variational formula of the Kullback-Leibler
information. The weak convergence approach is useful and applicable to a wide range of problems,
whereas we can also prove the LDP for F̂n by another approach, which is more simple since it
uses Sanov’s theorem.

Second, alternative approach is based on introducing a metric in the space of distributions and
then using Sanov’s theorem. Let us denote by φG the characteristic function of G ∈ F, where F

is the space of distributions on R
d. For G, H ∈ F we define a metric in F by

ρ(G,H) �
∞∑

k=1

1
2k

sup
t∈[−k,k]

|φG(t) − φH(t) |, (2)

where [−k, k] = [−k, k]× · · · × [−k, k] ⊂ R
d. It is trivial to show that ρ is one of the metrics that

are compatible with the weak topoloty. In addition, the space F is complete with respect to ρ.
Let {Hn, n ∈ N} be a sequence in F converging weakly to δ0, where δ0 is the distribution with
unit mass at 0. The following property of ρ is crucial in this approach.

sup
G∈F

ρ(G ∗ Hn, G) −→ 0, (3)
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where ∗ stands for the convolution operator. This property shows that δ0 can be regarded as an
approximate g identity h with respect to ρ. Let Fn be the standard empirical distribution based
on the segment X1, . . . , Xn of i.i.d. d-dimensional random variables with distribution F . Utilizing
(3) and Sanov’s theorem we can prove that {F n ∗ Hn, n ∈ N} satisfies the LDP on F with good
rate function R( · |F ), where R(G |F ) denotes the Kullback- Leibler information for G and F in F.
This theorem reduces to Sanov’s theorem if we choose Hn = δ0, and thus it can be regarded as an
extension of Sanov’s theorem. As a corollary of this theorem it can be proved that the smoothed
empirical distribution (1) satisfies the LDP with the same good rate function above.

We consider several applications of the LDP for F̂n. We can apply the LDP for F̂n to obtain the
following large deviation inequality : for every ε > 0

lim sup
n→∞

1
n

log P

(
sup

x
| F̂n(x) − F (x) | � ε

)
� −ε2,

where F and K are assumed to be continuous.
Suppose that F has the density f and let fn be the usual kernel density estimator with

density kernel κ. Denote by φg the characteristic function of a density g. We assume that φf (t) is
integrable. It can be shown that hc+1

n supx |fn(x) − f(x)| converges to 0 superexponentially fast
if ∫

|φκ(t)|dt < ∞ (4)

lim
k→∞

sup
n

hc
n

∫
|t|>khn

|φκ(t)|dt = 0 (5)

for a constant c > 0. Some symmetric kernels, e.g., Gaussian, double exponential, triangular
kernels, satisfy (4) and (5) with c = 1.

The smoothed bootstrap empirical distribution F̂n
∗ is defined as the smoothed empirical dis-

tribution of the bootstrap sample drawn from F̂n. It can be also proved that F̂n∗ obeys the LDP
with the same good rate function R( · |F ) almost surely.


