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1 ABSTRACT

As many economic relationships are dynamic in nature, various econometric pro-

cedures for analyzing these dynamics have been studied. Among these procedures,

this dissertation is particularly concerned with (i) specification tests in dynamic

panel models (ii) asymptotic results in cointegrating regression and unit root test

in nonstationary panel models. The purposes of this dissertation, therefore, are to

propose autocorrelation and cross sectional correlation tests in dynamic panel mod-

els and to develop a unit root test that accounts for cross-sectional dependency in

nonstationary panel models.. Hence, focus is on the impacts of serial correlations

in either time or cross-section dimensions of panels and on the impacts of small or

fixed time series dimensions. Additionally, some problems on the estimation of both

stationary and nonstationary panel data models are considered.

Chapters 2–4 deal with generalized method of moment (GMM) estimations in

dynamic panel models. Chapter 2 finds an alternative system GMM estimation by

changing the weight matrix that accounts for the variance ratio between individual

effects and idiosyncratic disturbances. Since an initial optimal weight matrix is not

known, we suggest the use of a suboptimal weight matrix, which reduces the finite

sample bias while increasing the efficiency in the system estimation. We also investi-

gate the potential efficiency gain based on the Kantorobich Inequality (KI) and the

small sample properties of the suboptimal system estimator. Chapter 3 suggests an

autocorrelation test in dynamic panel models. It is well known that the standard

Arellano and Bond (1991) GMM estimator loses its consistency when the errors are

serially correlated. They suggests several specification tests to detect the existence of
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serial correlation, such as the m2 and Sargan tests. We, therefore, compare our test

with the m2 and Sargan tests where the error terms follow either AR(1) or MA(1)

process. In Chapter 4, we shift our attention to correlation in the cross-section

dimensions. Using a time-varying, individual-specific effects model, suggested by

Holtz-Eakin (1988), we suggest Hausman and Sargan tests for sectional correlation

and compare their small-sample properties with existing tests: the LM (Breusch and

Pagan, 1980), CD (Pesaran, 2004) and Sargan-difference tests (Sarafidis, Yamagata

and Robertson, 2006).

Chapters 5 and 6 develop the analysis of nonstationary panel data models. Chap-

ter 5 studies the limit theory in a nonstationary panel while the time series dimen-

sion, T , is assumed to be fixed. The asymptotic distributions of the Least Square

Dummy Variables (LSDV) and the Fully Modified (FM) OLS estimators are derived

in both spurious and cointegrated regression. This chapter also demonstrates how

the order of a limit sequence affects its asymptotic results. To this end, we compare

the limiting behavior of these estimators with that of the sequential limit designed

by Phillips and Moon (1999).

In Chapter 6, we develop a panel unit root test that accounts for cross-sectional

correlation. The conventional unit root and cointegration tests assume cross-sectional

independence in nonstationary panel data models. However, this rather convenient

assumption is rarely satisfied in practice, especially in a macro-economic context.

To remedy this, we develop a modified DF type unit root that uses the Levin and

Lin (1992) test followed by the quasi-difference defactoring procedure.

2 Dynamic Panel Data Models: Chapters 2–4

Since the pioneering work of Balestra and Nerlove (1966), the analysis of dynamic

panel data models has been a major topic of econometrics. These dynamic relation-

ships are characterized by the inclusion of a lagged dependent variable among the

regressors; for example,

yit = δyi,t−1 + x′
itβ + uit i = 1, . . . , N ; t = 1, . . . , T. (1)

We may assume that uit follow a simple one-way error component model,

uit = μi + vit, (2)

where μi ∼ iid(0, σ2
μ) and vit ∼ iid(0, σ2

v) are independent of each other.1 Alter-

natively, we may want to model a more complicated relationship, such as serial

correlation in either the time series dimension or a cross-section dimension. For

1A two-way error component model, uit = μi + ft + vit, can also be assumed, where μi, ft and
vit are independent of each other.
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example, as in Holtz-Eakin (1988), we assume that uit has time-varying individual

specific effects,

uit = φift + vit, (3)

so that there exist sectional correlations: E(uitujt) �= 0 for i �= j.2

In this dissertation, we first consider the dynamic panel data regression described

in (1) with a simple one-way error component model, specifically the efficient system

GMM estimation, the autocorrelation test and the Sargan test for sectional corre-

lation with a time-varying individual-effect model. In the context of the dynamic

panel—i.e., a fixed effects model with a one-way error component structure—we

find that the LSDV estimator can be severely downward biased when the time di-

mension is short, regardless of the cross-sectional size of the panel. On the other

hand, Anderson and Hsiao (1981, 1982) propose two IV estimator (AH-IV) that

make use of the dependent variable lagged two periods, yi,t−2 or its first differenc-

ing, Δyi,t−2 = yi,t−2−yi,t−3 as instruments for their models in first differences. These

instruments are not correlated with Δuit, as long as uit themselves are not serially

correlated. Although the AH-IV estimators are consistent only for N → ∞, they

are inefficient because they do not exploit all valid instruments and do not take

into account the MA(1) structure of the disturbance term. To remedy this, many

GMM-based estimations have been suggested.

Chapter 2 examines the efficiency gain from a suboptimal weight matrix in the

system GMM estimation. It is generally known that using many instruments can

improve the efficiency of various IV and the GMM estimators (Arellano and Bover,

1995; Blundell and Bond, 1998). The system GMM estimator in dynamic panel data

models, which combines two moment conditions (i.e., for the differenced equation

and for the model in levels), is, therefore, more efficient than the standard GMM

estimator. It is also well understood that an asymptotically efficient estimator can be

obtained through the two-step procedure in standard GMM estimation. In that case,

the two-step system GMM estimator must be the most preferred one in dynamic

panel model. However, as in standard GMM estimation, the estimated standard

error of the two-step system estimator can have severe downward bias for moderate

sample sizes, N (Windmeijer, 2004). In practice, therefore, we often rely on inference

based on the less-efficient one-step estimator, which is much more reliable than the

two-step estimator.

The main object is, then, how we choose the weight matrix in the first step of

the estimation, especially in small samples in time series dimension. Relating this,

a previous study (Windmeijer, 1998) shows that the efficiency of the system GMM

estimator is greatly affected by the choice of the weight matrix.

2We can also set φi as factor loadings to be estimated while ft is unobserved common factor
that induce sectional correlations. See Pesaran (2004).
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We therefore suggest a suboptimal weight matrix that accounts for the variance

ratio (the ratio of the variance of individual effects to the variance of the idiosyncratic

error terms, say, ρ =
σ2

µ

σ2
v
) instead of using the conventional weight matrix, i,e., the

identity matrix, corresponds to the level estimation in the system GMM estimation.

As this suboptimal weight matrix requires a consistent estimate of the variance

ratio, the suboptimal system GMM estimator is categorized as a two-step system

GMM estimator. However, as it does not directly use residuals from the first-step

estimation, the downward-bias problem of the estimated standard error is expected

to be negligible.

Chapters 3 and 4 study two independent but closely related specification tests in

dynamic panel data models: an autocorrelation test for the time series dimension

and a serial correlation test for the cross-section dimension. Arellano and Bond

(1991) propose a standard GMM estimator that uses all the available lags at each

period as instruments for the first-difference equations to enhance efficiency. In

addition, they provide some specification tests (e.g., m2 and Sargan tests) for the

hypothesis that there is no second-order serial correlation for the disturbances of

the first-differenced equation. These tests are fundamental because the consistency

of the GMM estimators relies upon there being no correlation between the first-

differenced and two lagged variables.

However, there are some shortcomings in that these tests are limited to uncorre-

lated disturbances under the null but only moving-average (MA) errors under the

alternative hypothesis. Now, let us suppose that the disturbances have autocor-

relation (say, AR(1)) structures. As in the case of MA(1) disturbances, the usual

approach of using lagged values of the dependent variables as instruments in the dif-

ferenced equations is no longer valid. Furthermore, a GMM estimator that uses lags

as instruments under the assumption of white noise errors is inconsistent. This im-

plies that the m2 and Sargan tests—by using the inconsistently estimated residuals

from the first-differenced GMM estimation, which also uses invalid instruments—

may not be able to distinguish between AR and MA disturbances. The main purpose

of these chapters is, therefore, to propose a test of serial correlation based on the

consistently estimated residuals under either the null or the alternative hypothesis,

and to compare its performances with the m2 and Sargan tests.

A serial correlation in the time series dimension is not the standard GMM estima-

tor’s only source of the inconsistency. The impact of cross-sectional correlation—

which may arise due to the presence of common shocks and unobserved components

that become part of the error term, spatial dependence, or idiosyncratic pair-wise

dependence in the disturbances with no particular pattern or common component—

is comparatively more severe in a dynamic panel estimator. (Robertson and Symons,

2002; Pesaran, 2004; Anselin, 2001; etc.). If there is sufficient cross-sectional depen-

dence in the data, and this is ignored in the estimation, the pooled least squares
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estimator provides little gain over the single OLS equation. Phillips and Sul (2003)

show that the efficiency gains by pooling a population of cross-sections may largely

diminish if the cross-sectional dependence is ignored.

In Chapter 4, we suggest that if the disturbances are serially uncorrelated in time,

the conventional Sargan test can be used to detect the sectional correlation. This

implicitly shows that the Sargan test for misspecification is very unstable if sectional

correlation exists.

3 Nonstationary Panel Data Models: Chapters

5– 6

From the usual asymptotics of micro panels with large N (e.g., number of individ-

uals) and small T (time series dimension), the focus of panel data econometrics has

shifted towards studying the asymptotics of macro panels with large N and large T

due to the growing use of cross-country data over time to study Purchasing Power

Parity (PPP), international R&D spillover and growth convergence. These panels

have different characteristics and implications for theoretical and empirical analysis

from the large N abd small T panels that have been the traditional object of study

in panel data analysis. For example, in order to properly analyze large N and large

T panel data, the concept of multi-index asymptotics must be adopted.

There are two important streams in the literature on the use of large N and large

T nonstationary panels that are closely related the dissertation: (i) estimation and

inferences in cointegrating models and (ii) unit root and cointegration tests. Let us

consider the following panel regression

yit = x′
itβ + z′itγ + uit, (4)

where zit are the deterministic components (i.e., zero, one, and the fixed effects, μi)

or fixed effects as well as a time trend, t, and uit are the stationary disturbance

terms. We assume that xit are a vector of integrated processes of order one for all i:

xit = xi,t−1 + εit, (5)

where εit are i.i.d. disturbances. On the estimation and inference in the above

panel cointegration models, Kao and Chiang (2000), Phillips and Moon (1999),

and Pedroni (2000) have shown that the asymptotic properties of the LSE’s of the

regression coefficient and the associated test statistics are different from those of the

time-series cointegration regression models. In particular, Kao and Chiang (2000)

study the limiting distributions for the fully modified (FM) and dynamic ordinary

least square (DOLS) estimators in a cointegrated regression and showed they are
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asymptotically normal. The above estimators can be seen as generalizations of

Phillips and Hansen (1990) and Saikkonen (1991), respectively. Phillips and Moon

(1999) and Pedroni (2000) also present similar results for these estimators while the

latter considers the FM estimators in heterogeneous panel data models.

In the spirit of Kao and Chiang (2000), Chapter 5 derives the asymptotic distribu-

tions of the LSDV and FM-OLS estimators in both spurious and cointegrated panels.

The asymptotic distributions of the LSDV and FM-OLS estimators are investigated

based only on large N asymptotics; the time series dimension, T , is assumed to be

fixed. Much past panel data research has focused on estimating effects from non-

stationary panels with a large time series, T , and large individuals N , though the

practical sample size in the time dimension is moderate. This chapter introduces

a regression limit theory for nonstationary panel data with large numbers of cross-

sectional observations but moderate time series observations. For such cases a new

nonstationary panel limit theory which allows for large N and fixed T may be useful.

We will, therefore, introduce a fixed-T limit theory3 in nonstationary panel models

with homoscedastic disturbance terms in both spurious and cointegrated cases.

The last chapter studies panel unit root tests that account for cross section de-

pendence with a one-factor residual model. Consider the conventional model with

no factor structure,

yit = ρiyi,t−1 + z′itγ + uit, (6)

where uit is a stationary process.

Earlier works in the context of panel unit root tests include Levin and Lin (1992,

1993); Maddala and Wu (1999); Choi (2001a); Im, Pesaran and Shin (1997); and

Harris and Tzavalis (1999), to mention a few. In their seminal work, Levin and Lin

(1992, 1993) develop the asymptotic properties of unit root tests on panel data as

both N and T grow arbitrarily large. They also show how an augmented DF test

statistic for each individual time series can be used to construct a test for pooled

LSE’s regressions. The so-called IPS test allows for a heterogeneity of regression

coefficients and offers an alternative testing procedure based on averaging individual

unit root test statistics. Harris and Tzavalis (1999) derive unit root tests for pooled

LSE regression when the time dimension of the panel T is fixed and show that Levin

and Lin’s (1992) tests can be substantially undersize when T is small.

Although there is much research not named here, almost all of the aforementioned

research has in common in that they assume cross-sectional independence; that is,

E(uitujt) = 0. The transition from theory to a testable form inevitably involves the

use of so-called simplifying assumptions. Cross-section independence in panel unit

root tests has been this kind of assumption that is rarely satisfied in practice. In

3Harris and Tzavalis (1999), though it studies panel unit root tests, analytically derives the
limiting properties of LSE’s when T is fixed.
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cross-country analysis there might be unobserved common influences on all mem-

bers. For example, the EU countries are coordinated through their many common

economic policies. Due to the strong links across markets and the use of a numeraire

country in defining real exchange rates, as argued by O’Connell (1998), real exchange

rates between countries should have high cross-correlation in both the short and long

run. Furthermore, there is little evidence of cross-sectional independence within the

context of micro economy such as regional productivity.

However, attention has been drawn recently to the assumption of cross section

independence on which the asymptotic results of the conventional unit root test

procedure rely (O’Connell, 1998; Maddala and Wu, 1999). Using Monte Carlo

simulations, O’Connell (1998) shows that the Levin, Lin and Chu (2002) test suffers

from sectional correlation in terms of increased size and reduced power. Maddala and

Wu (1999) also report similar results from bootstrap experiments. This deficiency is

easily explained by the cross-sectional correlations: The variance of the numerator

of, say, the DF-t test increases with N . In that case, the Central Limit Theorem,

which requires a finite variance cannot be applied. Hence, no convergence result can

be stated for this general form of cross section dependence as N grows to infinity.

To remedy this, unit root tests that account for cross-sectional correlation have

been proposed recently. Among them are attempts to model sectional correlation

using common-factors representations of the data:

uit = λift + vit, (7)

where λi is a nonstochastic factor loading and ft is an unobserved common factor

independent of the idiosyncratic disturbances, vit. Research into this criteria include

Pesaran (2004), Moon and Perron (2004), Bai and Ng (2004), and Phillips and Sul

(2003), to name a few.

The main purpose of Chapter 6 is to propose new panel unit root test (Mod-

ified Dickey and Fuller (MDF) tests) for one-factor residual models and to com-

pare their small-sample performance with that of Pesaran’s (2004) and Moon and

Perron’s (2004) tests. These two tests are sufficiently close to our tests in model

specifications—while, at the same time, the defactoring procedures differ in im-

portant ways—to make it interesting to compare their properties. While Pesaran

(2004) and Moon and Perron (2004) use cross-sectional augmentation and principal-

component analysis to remove the sectional dependence, respectively, the MDF test

directly removes the factor from the variables through the Quasi-difference proce-

dure. As this defactoring procedure does not affect the limiting behavior of the

original variables, the standard DF tests are applied to the defactored series. The

asymptotic results reveal that the tests have limiting normal distributions under

the null of a unit root. Monte Carlo studies also demonstrate that the tests have

reasonable small-sample performance in terms of size and power.
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