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1. OVERVIEW

The goal of this thesis is to develop a convex duality theory for robust utility maximization
with unbounded random endowment. Suppose we are given a semimartingale S, a utility
function U, a set of admissible integrands (strategies) @, a set of probability measures P

and a random variable B. Then the problem is to:
(1.1) maximize  inf EP[U@- St + B)]. among b € ©.
€

The set P describes the so-called model uncertainty (also called Knightian uncertainty in
Economics), while the random variable (endowment) B expresses the terminal payoff of
a contingent claim. Therefore, this is understood as an optimal investment problem of a
buyer of the claim B, who faces the model uncertainty.

Convex duality theory is a general framework of solving optimization problems by pass-
ing to another (often easier) optimization on the dual space. There are a lot of duality
theories, in diverse problems involving stochastic/functional analysis, and we establish a
variant of those required to solve the robust utility maximization problem (f.1). The basic

idea is described as follows. Let V be the conjugate of U, i.e.,
V(y) =sup(U(x) —xy). Vy>D0.
X
Then some formal calculation suggests that the next inequality holds:
Y dQ

1.2 inf EX[UW-S; + B inf inf inf EP|V[AZ = B|.
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Here M, denotes the set of local martingale measures for S, which can be interpreted
as the dual of the set of stochastic integrals: {6 - St : § € ®} which is the primal domain.
We call the RHS the dual problem of (1.1), and this inequality is the basis of duality theory.

From the formal inequality (1.2), we expect that the primal problem (1.1) can be solved
via the dual. In fact, if the inequality holds as equality, the maximal admissible utility
can be computed via the RHS, which is often easier. Furthermore, if we obtain a solution
()1. Q P ) to the dual problem, then a separation argument using a version of Hahn-Banach
theorem and Yor’s closedness theorem yield a kind martingale representation for the den-
sity d Q /d P. Then the integrand appearing in the representation will turn out to be an
optimal strategy for the problem (1.1), in a suitable sense. In other words, the robust utility
maximization problem is completely solved via the dual problem.

These observations are of course only heuristics, and to be a rigorous mathematics, we

have to solve a number of questions. The “development of duality theory” thus consists of:

1. rigorously formulate the dual problem, and prove (1.2) as equality (duality);
2. solve the dual problem, i.e., find 2 minimizer ()Ax. Q 13) and characterize it;

3. and recover a solution to the primal problem from (i, Q P ).

In comparison to other existing research, the features of our work are summarized into

the following two aspects:

1. Unbounded endowment. Most of existing works on robust utility maximization prob-
lem consider only the pure investment problem, i.e., B = 0, excepting the studies of the
case with bounded endowment by [5] and [7]. Taking account the endowment as the

. terminal payoff of a contingent claim allows us to apply the utility maximization to a
valuation of claims under model uncertainty. More specifically, we introduce a robust
version of utility indifference price, with a representation through the duality. This is
financially important as the model uncertainty has received much attention in practice.
From a mathematical point of view, adding a bounded endowment causes no additional
difficulty, as we will see in the main text. However, an unbounded endowment makes
the problem more subtle, raising regularity problems in both primal and dual problems.
Roughly speaking, we will show that all kinds of regularities required to solve the
problem (1.1) are guaranteed by imposing natural (uniform) integrability conditions

involving B.
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2. Utility function on the whole real line. Utility maximization problems (either robust or
subjective) show up very different natures depending on whether dom(U) = {x € R :
U(x) > —oc} = R or = R... Most of existing articles on robust utility maximization
focus on the latter case with the exceptions [5] and [2], while we consider the former.
In this case, we faces a difficulty of choosing the admissible class ®@. It is well-known
that the usual admissible class @pp (see (2.1) below) is too small to admit an optimal
strategy even when P is a singleton and B = 0 (see e.g. [6]).

When we consider the general robust case, the situation gets even worse. In the subjec-
tive case with P = {P}, an optimal strategy in a suitable sense can be obtained in the
class of S-integrable processes  whose stochastic integral 8 - S is a supermartingale
under all reasonable local martingale measures. But the robust counterpart of this class
depends on a part of solution P 10 the dual problem, hence is not available in advance.
Furthermore, the dependence on P implies the dependence on the endowment B, which
is conceptually quite undesirable when we consider the robust utility indifference val-
uation. Thus the choice of admissible class is a delicate issue when we consider the
robust case with utility on the whole real line.

In this thesis, we employ the class &, of admissible strategy as the basic choice, show-
ing the duality with this class. Noting that the dual problem does not directly depend
on &, we prove that the duality is also stable under certain changes of admissible class,
hence the maximal admissible utility is unchanged in particular. Then we consider the
existence of optimal strategy in a certain enlargement of ®y,, which keeps the maximal

utility unchanged.

2. SUMMARY OF MAIN RESULTS

We start from an auxiliary complete filtered probability space (2. F. (F¢)sefo, 7. P). Ev-
erything is defined on this space unless otherwise mentioned. In particular, every element
of P is assumed to be absolutely continuous w.r.t. P. The semimartingale S is always

assumed to be locally bounded. Also, our basic choice of @ is:

2.n Opp :=1{0 € L(S): 0y =0, 6§ is uniformly bounded from below}.
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Chapter 3. We first examine our idea in a simple case where the utility function is ex-
ponential: U(x) = —e™®*. This nicely behaving utility function dramatically reduce
technical complexities, giving us a deep understanding of the structure of the problem.

With exponential utility, the primal and dual problems reduce respectively to:

2.2) minimize  sup E? [e_“(9'57+3)] . among 8 € O,
Pep
(2.3) minimize H(Q|P) + «E?[B]. among (0. P) € My x P.

Here H(Q|P) is the relative entropy of Q wrt. P, and M,y is the set of elements of
Miee having finite relative entropy w.r.t. some P € P. In this case, the duality to be

shown simplifies to

(2.4) ginf sup EP[e—a(9-5T+B)] - e"inf(Q.P)E.«\/le“,XP(H(Q|P)+O!EQ[B])
€O pep

Assume that, P is weakly compact, the market is free of arbitrage in that M., contains

an element O ~ P, and

(A3.3) the family {¢™*BdP/dP}pep is uniformly integrable, and

sup EF[e@T987] < oo and sup EL[e*87] < 00. 38 > 0.

PeP PeP
Under these assumptions, we first prove that the dual problem (2.3) admits a solution
(Q. 13) possessing some reasonable properties, and the density d Q /d P has a kind of
martingale representation: d Q /d P=c¢ -exp(—a(é - St + B)), where ¢ is a constant and
fisa (S, Q)—integrable process whose stochastic integral 6-Sisa Q-martingale.

We next consider the duality for a special choice of @. Let &, be the set of S-integrable
predictable processes 6 with y = 0 such that § - S is uniformly bounded. Then we show
that the duality (2.4) holds with &@ = ;. This duality will turn out to be stable: (2.4) is
invariant under changes of admissible class @ in a certain range.

We proceed to the existence of an optimal strategy in an appropriate enlargement of
®p. As the problem (2.2) is of minimax-type, it suffices to find a saddle point of the
map (0, P) + E%[exp(—a(f - ST + B)], and it is natural to ask if such a saddle point
consists of the pair (t‘}, 13), where P is the P -part of a dual optimizer, and 6 is an “optimal
strategy” under fixed probability P, i.e., a minimizer of 6 — Eﬁ[exp(——a(ﬁ - St + B)].

The latter is given by the integrand appearing in the representation of d Q /d P. Under an
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additional assumption, we verify this conjecture with a certain admissible class @ p, using
the variational inequality characterizing the optimality of P.

We provide also a solvable example in a 2-dimensional Brownian factor setting, using
a standard stochastic control technique.
Chapter 4. In the proof of duality (2.4) for the exponential case, we use the subjective
duality equality, that is, the duality with fixed P € P. Such dualities are already available
if either U is exponential ([4]) or the endowment B is bounded ([1]). These results motivate

us to consider: to what degree of generality does the duality below hold?

. dQ dQ
2.5 E[UG@G-S B)] = inf f E|\V{I{i-—= A—B]|.

Here My denotes the set of Q € M, such that E{V(dQ/dP)] < co. We prove this
duality for a wide class of utility functions U and suitably integrable B. The idea of proof
is based on a refinement of {1] from a slightly different point of view. More precisely, we
apply the Rockafellar theorem on convex integral functionals to a random utility function
(w.x) = U(x + B(w)), by establishing some simple estimates for this random utility and
its conjugate. This allows us to exploit Fenchel’s general duality theorem.

Also, we provide a result on the existence of optimal strategy in a suitable admissible
class. This part is rather expository, and many similar results are available with slight
differences in assumptions (e.g. [3]).

Chapter 5. The dual problem in Chapter 3 was the minimization of the relative entropy
with unbounded penalty term Q — E2[B], over the product set My x P. This leads us
to more general class of minimization problems, replacing the entropy H(Q|P) by other

f-divergence functionals f(Q|P) associated to a convex function f:
(2.6) minimize  f(Q|P)+ E?[B]. among (Q.P) e Q x P.

Here Q is a set of probabilities absolutely continuous w.r.t. P. If f(x) = xlogux, the
f-divergence coincides with the relative entropy. The case with 7 being a singleton and
B = 0 is classical with a lot of research, and [2] recently extends these to the case with
weakly compact P. It is known that the f-divergence functional is jointly weakly lower
semicontinuous. Thus, as P is compact, the existence of minimizer of (Q, P) > f(Q|P)
is guaranteed if we have that some level set of O +> infpep f(Q|P) is also compact,

and this is the heart of [2]. Their argument works even for the case with a penalty term
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Q + E?[B]if B is bounded, since then the penalty is continuous, hence does not harm
the regularity of the functional to be minimized.

However, the case with unbounded B is more subtle, since the penalty is no longer even
lower semicontinuous. Thus, the regularity of the penalized f-divergence functional is not
a priori trivial. Also, we need some estimates for this functional to apply the compactness
(<« uniform integrability) criterion of [2]. In Chapter 5, we closely investigate the problem
(2.6), giving the existence and variational characterization of a solution under an uniform
integrability condition involving B.

Chapter 6. We finally develop a duality theory for robust utility maximization problem
(1.1) for a wide class of utility functions and unbounded random endowment B, general-
izing the idea of Chapter 3, and using the results of Chapters 4 and 5.

We first consider the duality:

2.7 inf EF[U®-Sr + B)] = inf inf V(LQ|P) + AEC[B]).
2.7 sup inf, [U(¢ - ST + B)] i'io@,p)‘e'}wxp((@ )+ (B])

where V(-|-) is the f-divergence associated to V, and My is the set of elements 0 € M,
with infpep V(Q|P) < co. Under some assumptions including the compactness of P and
an uniform integrability condition involving B, we first show that the order of “supgcg”
and “infpep” can be changed, reducing the robust problem to a family of subjective prob-
lems. Then the robust duality (2.7) follows if we can apply the the subjective duality of
Chapter 4 to each P € P. Although this is not possible, we can take a dense subset of
‘P on which the subjective duality holds. Then some approximation arguments prove the
duality. Also, we introduce a robust version of utility indifference price of B, and compute
it via the duality.

We next consider the dual problem:
(2.8) minimize V(AQ|P)+ AE2[B]. among A > 0. (0, P) € My x P.

With a simple observation, this problem is decomposed into: the minimization of (. P) +—
£1.(Q|P)+ EC[B]foreach A > 0, where f3(x) = V(Ax)/A, and the minimization of the
value function v(A) := inf(p pyesm, xp (V(AQ|P) + AEC[B])in A > 0. The first part is
nothing other than the problem of Chapter 5, while the latter is easy.

Finally, we discuss the existence of optimal strategy for (1.1) in a certain enlargement

of @pp. As in the exponential case of Chapter 3, it is enough to find a saddle point of
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(0. P) — EP[U - St + B)], and a natural candidate is the pair (é. P) consisting of the

P-part of a dual optimizer (Q. 13) and the optimal strategy under P. Under an additional

assumption, we verify this via the variational inequality for P.

(1]

(2]

(5]

(6]

REFERENCES

Bellini, F., and M. Frittelli (2002): On the existence of minimax martingale measures.
Math. Finance 12(1), 1-21

Follmer, H., and A. Gundel (2006): Robust projections in the class of martingale mea-
sures. lllinois J. Math. 50(2), 439472

Goll, T, and L. Riischendorf (2001): Minimax and minimal distance martingale mea-
sures and their relationship to portfolio optimization. Finance Stoch. 5(4), 557-581
Kabanov, Y. M., and C. Stricker (2002): On the optimal portfolio for the exponential
utility maximization: remarks to the six-author paper. Math. Finance 12(2), 125-134
Miiller, M. (2005): Market Completion and Robust Utility Maximization. Ph.D. thesis,
Humboldt Universitit zu Berlin

Schachermayer, W. (2001): Optimal investment in incomplete markets when wealth
may become negative. Ann. Appl. Probab. 11(3), 694-734

Wittmiiss, W. (2008): Robust optimization of cousumption with random endowment.

Stochastics 80(5), 459-475







