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Macroeconomic time series such as GDP, the industrial production index, and the unemploy-

ment rate reflect the state of a real economy. Since macroeconomic time series are the most

important information set for economic activity, they are widely used as data for empirical anal-

yses. However, the following two points should be considered when dealing with macroeconomic

time series.

First, the integrated order (stationarity or non-stationarity) of the series should be specified

correctly because the asymptotic properties of estimators crucially depend on it. For example,

when the series are I(1) –that is, when the series have a unit root– the regression is spurious

and the OLS estimator no longer has consistency without any treatments (such as differencing)

except for the special case of cointegration. Then, misspecifying a series as stationary when it is

actually non-stationary is a fatal problem in parameter estimation. On the other hand, regarding

a stationary series as non-stationary is also problematic because the problem of over-differencing

arises. To avoid such problems, it is necessary to use tests for a unit root or stationarity with

correct size and high power.

The second point concerns the treatment of multi-dimensional data. Recent development of

technological advances in data collection has made large-dimensional datasets of macroeconomic

time series available for empirical analysis. Although using as many macroeconomic time series

as we can is widely believed to be ideal, the traditional VAR model would not be appropriate for

large-dimensional data, which lead to a lack of degrees of freedom of the VAR model, causing the

incidental parameters problem in theory and poor accuracy of the estimators in practice. Alter-

natively, approximate factor models have been used for large-dimensional data recently because

they are quite useful for reducing the dimensions of data without the loss of their rich information.

However, theoretical studies on approximate factor models are ongoing, and further theoretical

studies on the approximate factor models are yet needed.
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The aim of this dissertation is to provide new theoretical findings on testing for stationarity

and approximate factor models. This dissertation is organized as follows:

Chapter 1 Overview

Chapter 2 Reducing the Size Distortion of the KPSS test

Chapter 3 Investigating Finite Sample Properties of Estimators for Approximate Factor

Models When N Is Small

Chapter 4 Identification of Approximate Factor Model through Heteroskedasticity

1. Summary of Chapter 2

Chapter 2 investigates the sources of the size distortion of the test proposed by Kwiatkowski et

al. (1992) (KPSS test, hereafter) and proposes the bias corrected KPSS test statistic with less size

distortion.

The KPSS test is most widely used by applied econometricians to test for the stationarity of

macroeconomic time series. Although there is a similar type of test called unit root test, which

include the Dickey–Fuller test and the Phillips-Perron test, the KPSS test is essentially different

from the unit root tests in that the null hypothesis of the KPSS test is that the series is (covariance)

stationary, while that of the unit root tests is that the series is non-stationary. Thus, the KPSS test

is quite useful for detecting the non-stationarity of a series from a complementary point of view.

Let yt = µt+xt where µt is a deterministic term, (1−α)xt = ut and ut is a covariance stationary

process with mean zero so that E[yt] = µt. The KPSS test statistic is defined as

KPSS =
1
T 2

∑T
t=1

(∑t
s=1 x̂s

)2
ω̂

,

where x̂t is the regression residual of yt on µt and ω̂ is a consistent estimator of the long-run variance

ω = limT→∞Var(T−1/2
∑T

t=1 xt). Then, the KPSS test statistic is constructed by two parts: (i) the

squared sum of the partial sum of x̂t (numerator) and (ii) the estimator of the long-run variance

(denominator). Under |α| < 1 –that is, yt is covariance stationary– it can be shown that the KPSS
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test statistic weakly converges to a certain non-standard distribution that is free from nuisance

parameters when T goes to infinity.

However, as Caner and Kilian (2001) and many others point out, the KPSS test has poor finite

sample properties and suffers from serious size distortion of the test when the series is persistent.

In particular, when α is close to 1, the KPSS test seriously overrejects the null of stationarity

compared to its nominal size so that the user excessively misinterprets the stationary times series

as non-stationary.

There is a question of where the sources of the size distortion of the KPSS test come from.

The primary source of the distortion comes from (ii): the estimation bias of ω. Since we can see

that xt has an AR(∞) representation given by xt = ϕ(L)εt under moderate assumptions on ut

where εt is a sequence of white noise with E[εt] = σ2
ε , it is natural to employ the autoregressive

spectral density estimator of ω defined by σ̂2
ε/ϕ̂

2(1) where ϕ̂2(1) and σ̂2
ε are the OLS estimates of

AR(p) lag polynomials with fixed p and σ2
ε respectively. However, the KPSS test statistic with the

autoregressive spectral density estimator suffers from a lack of power because it is not consistent,

although it effectively mitigates the overrejection problem.

To avoid inconsistency of the test, Chapter 2 applies the data dependent boundary rule sug-

gested by Sul et al. (2005) to the autoregressive spectral density estimator. The alternative

autoregressive spectral density estimator is defined as

ω̃AR =
σ̂2
ε

(1− ϕ̃)2
where ϕ̃ = min

 p∑
j=1

ϕ̂j , 1−
c√
T

 ,

with c being some positive constant.

Furthermore, Chapter 2 sheds light on the source of the size distortion that comes from (i).

Based on the AR(∞) representation of xt, Chapter 2 derives the bias term bT up to O
(
1
T

)
. Specif-

ically, when xt is an AR(1) process given by xt = ϕxt−1+ εt, we will see that bT can be represented

by

bT = −b0
T

σ2
εϕ1

(1− ϕ1)2(1− ϕ2
1)
,

where b0 is a fixed positive constant that varies depending on the specification of µt. Note that since
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the macroeconomic time series has a positive autocorrelation in general, ϕ1 > 0 so that bT < 0.

Then, in contrast to the bias from (ii), the bias from (i) turns out to be the source of underrejection

and leads to diminish the power of the test. Taking into account these findings, Chapter 2 proposes

the following bias corrected KPSS test statistic:

KPSSBC =
1
T 2

∑T
t=1

(∑t
s=1 x̂s

)2 − b̂T

ω̃AR
,

where b̂T is the OLS estimator of bT . Although the bias corrected KPSS test statistic has the same

limiting distribution as the original KPSS test statistic under the null hypothesis, it is expected

that the bias corrected KPSS test statistic has much less size distortion than the existing ones

based on the arguments above. We will see that Monte Carlo experiments provide the evidence

that the bias corrected KPSS test statistic effectively reduces the size distortion as expected.

2. Summary of Chapter 3

Chapter 3 examines the finite sample properties of estimators for approximate factor models when

the dataset is low-dimensional. Let xit be the ith macroeconomic time series at time t for i =

1, 2, . . . , N and t = 1, 2, . . . , T . The factor models assume that xit is driven by r latent factors that

are common among the series and an idiosyncratic error that is unique for i:

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + εit,

where Fkt is the kth latent factor, εit is the idiosyncratic error of i at t and λik is the coefficient of

Fkt called factor loading in the literature. We sometimes represent the factor model in multivariate

form as

xt = ΛFt + εt,

where xt = [x1t, x2t, . . . , xNt]
′ (N×1), Λ = [λ′

1, λ
′
2, . . . , λ

′
N ]′ (N×r) with λi = [λi1, λi2, . . . , λir]

′ (r×

1) and εt = [ε1t, ε2t, . . . , εNt]
′ (N × 1). Let E[εtε

′
t] = Ω. The model is called the “approximate”

factor model when the idiosyncratic errors are cross-sectionally dependent, i.e. Ω is non-diagonal

positive definite matrix while the model is called the “exact” factor model if Ω is diagonal.
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Since it is natural to consider that macroeconomic time series and their shocks are mutually

dependent, the approximate factor model is suitable for economic analysis. However, we confront a

problem in estimating the factors by approximate factor models: we need large dimensional datasets

to obtain the estimators because their asymptotic behavior crucially depends on the assumption

N → ∞. Then, when we cannot obtain large dimensional datasets because of data limitations,

must we give up employing approximate factor model in empirical analysis? Chapter 3 tries to

answer this question by investigating the finite sample properties of the estimators for approximate

factor models when the dataset is low-dimensional via Monte Carlo simulations.

Chapter 3 investigates the finite sample properties of the following three estimators when

N = 5, 7 and 10: (i) the principal component analysis (PCA) estimator, (ii) the quasi-maximum

likelihood (QML) estimator, and (iii) the state-space subspace (SSS) estimator. Chapter 3 yields

the following key findings. First, the PCA and QML estimators perform very well even when N

is small, while the SSS estimator does not. This result overturns the rule-of-thumb that the exact

factor model should be employed when the data is low-dimensional. Second, the PCA estimator is

suitable for strongly dependent approximate factor models, while the QML estimator is appropri-

ate for exact or weakly dependent approximate factor models. Third, the PCA estimator is more

robust to the degree of cross sectional dependence of the series than is the QML estimator.

3. Summary of Chapter 4

Chapter 4 investigates the identification problem of factor models and proposes a new identification

scheme for large-dimensional factor models through heteroskedasiticity of factors.

It is well known that factor models have a serious problem in estimating factors: the“ rotation

problem.” Consider the factor model

xt = Λ0F 0
t + εt, t = 1, 2, . . . , T,

which is the same as the one in Chapter 3. Note that 0 indicates the true values. Let H0 be a

non-singular r × r matrix and insert (H0)−1H0 (= Ir) between Λ0 and F 0
t in this model. We thus
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obtain

xt = Λ0(H0)−1H0F 0
t + εt,

≡ L0F0
t + εt,

where L0 = Λ0(H0)−1 and F0
t = H0F 0

t . Then, it is obvious that we cannot distinguish
(
Λ0, F 0

t

)
from

(
L0,F0

t

)
without imposing additional assumptions on the model. That is, we cannot consis-

tently estimate (true) Λ0 and F 0
t without imposing any identifying restrictions on the factors and

factor loadings in general. We call H0, L0 and F0
t rotation matrix, rotated factor loadings (matrix)

and rotated factors, respectively.

In econometric literature, previous studies such as Bernanke et al. (2005), Stock and Watson

(2005) and Yamamoto (2011) propose identification schemes for factors based on the structural

factor model. These are quite similar to that of the structural VAR model and we can estimate

the true factor and factor loadings from rotated factors and factor loadings under their restrictions.

However, as in the traditional structural VAR model, their identification schemes basically rely

on zero restrictions such as Sims’ (1980) recursive restriction and Blanchard and Quah’s (1988)

long-run restriction, which seem to be quite restrictive and ad hoc because they impose zeros on

the structural parameters a priori.

Chapter 4 proposes a new identification scheme for approximate factor models through het-

eroskedasticity of factors, following the ideas of Rigobon (2003). It is worth noting that although

our identification scheme is based on the structural model, it does not require zero restrictions such

as the orthogonality of factors or recursive restriction of factor loadings.

The main assumptions of our model are that the sample period is divided into two regimes

and that the variance of the factors changes depending on the regime while the factor loadings

are invariant through regimes. Let S1 and S2 be the first and second halves of all sample periods,

respectively. Then the process of factors is assumed as follows:

F 0
t = Φ0

1(L)F
0
t−1 + et, E[ete

′
t] = Ir t ∈ S1

F 0
t = Φ0

2(L)F
0
t−1 + et, E[ete

′
t] = Σe0

2 t ∈ S2
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where Σe0
2 = diag(σ2

10, σ
2
20, . . . , σ

2
r0). On the other hand, Chapter 4 assumes that the factor model

remains xt = Λ0F 0
t +εt in both regimes. Although it seems that the invariance of factor loadings is

unrealistic given that the process of factors varies depending on regimes, we see in Chapter 4 that

the Great Moderation is one example of this assumption, so it is not an unrealistic one.

Based on the assumptions and asymptotic properties of the PCA estimator, we construct iden-

tifying restrictions that link reduced form parameters with structural parameters. Let F̃ s and

Λ̃s = [λ̃1,s, λ̃2,s, . . . , λ̃N,s]
′ be the PCA estimators of F 0,s and Λ, respectively, where F 0,s is a

set of the true factors in Ss. Furthermore, assume that H0
s is a rotation matrix in Ss. Since

λ̃i,s− (H0
s
′)−1λ0

i
p→ 0 holds for each i and s in a standard approximate factor model, essentially we

have the restrictions1

Λ̃1 − Λ(H0
1 )

−1 = 0,

Λ̃2 − Λ(H0
2 )

−1 = 0.

Note that the first terms are obtained from the data and the second terms are structural parameters.

Then, we can estimate the structural parameters by minimum distance estimation and obtain the

estimators of rotation matrices H0
1 and H0

2 . Since F̃ s
t − H0

sF
0
t

p−→ 0 holds for s = 1, 2 from Bai

(2003), we yield the estimator of true factors by

F̂t =

{
(Ĥ0

1 )
−1 F̃t if t ∈ S1

(Ĥ0
2 )

−1 F̃t if t ∈ S2

,

where Ĥ1 and Ĥ2 are the minimum distance estimators of H1 and H2 respectively. It should be

noted that since the total number of restrictions depends on N and N → ∞ is assumed in standard

approximate factor models, the asymptotic properties of the minimum distance estimator are not

trivial. Chapter 4 investigates the asymptotic properties of the minimum distance estimators and

derives the consistency of Ĥ1 and Ĥ2.

Monte Carlo simulations confirm that our identification scheme works well and give encouraging

evidences that we can precisely estimate the true factors with our estimator as expected.

1See also Chapter 4, which considers more restrictions.
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